Capturing the Energy Efficiency Opportunity

Colm Gallagher, Dominic O'Sullivan

Our 2050 – Final-Project Event, Fitzwilliam Hotel, Dublin | Dec 10th 2018

Results

- Machine learning reduces the uncertainty in energy savings
- A broader scope of analysis using larger data sets increases accuracy
- Prescriptive modelling methodology developed
- Advanced practices can be adopted without increasing the costs & labour requirements
- IntelliMaV application developed

vironmenta

Fig. 1: Overview of M&V process & representation of methods developed

Impacts

Fig. 2: Economic value of changes in energy intensity

• Aid the removal of barriers that prevent investment in cost-effective energy efficiency (EE)

o Risk

 $\circ \operatorname{Cost}$

Environmental

 \circ Uncertainty in energy savings

Skills gap in workforce

• Populate the knowledge gap

Renewable Ene

- Minimise the costs of completing M&V
- Accurate performance verification enables the development of targeted EE policy

SCHOOL

Policy Insights

- Issues with current policy:
 - Standards need to be raised
 - Lack of focus placed on persistence of savings
 - Challenges faced on individual project level
- Energy Efficiency Directive must embrace M&V 2.0 practices
- Successful EE obligation scheme
- How confident can we be in savings reported in 2020?
- What will change as we progress towards 2030?

Year	New Energy Savings	Cumulative Energy Savings
1	1.5%	1.5%
2	1.5%	3%
3	1.5%	4.5%
4	1.5%	6%
5	1.5%	7.5%
6	1.5%	9%
7	1.5%	10.5~%

Opportunities

- Data-driven energy modelling using machine learning techniques
- Automated performance verification
- Real-time M&V to maximise the opportunity
- Prescriptive guidance for practitioners to implement

nvironmenta

 IntelliMaV: a data science-based cloud computing application for M&V 2.0

Fig. Example of IntelliMaV web-based user interface

